Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Na+/H+ exchanger¿Í HCO-3 transporter¿¡ ÀÇÇÑ ÈòÁã Ÿ¾×¼± ¼±¼¼Æ÷³» pH Á¶Àý

MODULATION OF INTRACELLULAR pH BY Na+/H+ EXCHANGER AND HCO-3 TRANSPORTER IN SALIVARY ACINAR CELLS

´ëÇѼҾÆÄ¡°úÇÐȸÁö 1998³â 25±Ç 2È£ p.352 ~ 367
¹Úµ¿¹ü, ¼­Á¤ÅÃ, ±èÀç°ü, Á¤Àç¿ë,
¼Ò¼Ó »ó¼¼Á¤º¸
¹Úµ¿¹ü (  ) - ¿¬¼¼´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç
¼­Á¤Åà(  ) - ¿¬¼¼´ëÇб³ ±¸°­°úÇבּ¸¼Ò
±èÀç°ü (  ) - ¿¬¼¼´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç
Á¤Àç¿ë (  ) - ¿¬¼¼´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç

Abstract

°á·Ð
Ÿ¾×¼± ¼±¼¼Æ÷´Â Ç÷¾×À¸·ÎºÎÅÍ ÀüÇØÁú°ú ¹°À» À¯ÀÔÇÏ¿© µµ°üÀ¸·Î À̵¿½ÃÅ°¹Ç·Î½á Ÿ¾×À»
Çü¼ºÇÏ´Â ¿ÜºÐºñ ±â°üÀÌ´Ù. Ÿ¾×ÀÇ Çü¼º°úÁ¤¿¡´Â ¸¹Àº À̵¿ ´Ü¹éÁú°ú È¿¼ÒµéÀÌ °ü¿©ÇÏ¸ç µû
¶ó¼­ ¼¼Æ÷³» pH°¡ ÀûÀýÈ÷ À¯ÁöµÇ¾î¾ß¸¸ ÇÑ´Ù. ´Ù¸¥ ¸ðµç °íµîµ¿¹°ÀÇ ¼¼Æ÷¿Í ¸¶Âù°¡Áö·Î Ÿ
¾×¼± ¼±¼¼Æ÷ÀÇ ¼¼Æ÷³» pHÁ¶Àý¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ÀåÄ¡·Î changer°¡ Àִµ¥ ÀÌ
exchanger´Â ¹«½ºÄ«¸°¼º ¼ö¿ëüÀÇ ÀÚ±ØÀ¸·Î Ÿ¾× ºÐºñ°¡ Ç×ÁøµÉ ¶§ È°¼ºÈ­µÇ´Â °ÍÀ¸·Î ¾Ë
·ÁÁ® ÀÖ´Ù. µû¶ó¼­ º» ¿¬±¸ÀÇ Ã¹ ¹ø° ¸ñÀûÀº ¹«½ºÄ«¸°¼º ¼ö¿ëü ÀÚ±ØÀ¸·Î
Na+/H+ exchanger°¡ ¾ó¸¶³ª È°¼ºÈ­µÇ´ÂÁö ¾Ë¾Æº¸´Â °ÍÀÌ¸ç µÎ
¹ø°·Î Na+/H+ exchanger¿Ü¿¡µµ ¼¼Æ÷³» pH Á¶Àý¿¡ °ü¿©ÇÏ°í
Ÿ¾×³» HCO-3 À̿³󵵸¦ ³ô¿© Ä¡¾Æ¿ì½ÄÁõ ¿¹¹æ¿¡ °ü¿©ÇÒ °Í
À¸·Î »ý°¢µÇ´Â HCO-3 cotransporterÀÇ À¯¹«¸¦ È®ÀÎÇÏ´Â °ÍÀÌ
´Ù.
ÈòÁã ¼öÄÆÀÇ ¾ÇÇϼ±¿¡¼­ ¼±¼¼Æ÷¸¦ ºÐ¸®ÇÏ¿© ¼¼Æ÷³» pH¸¦ ÃøÁ¤Çϴµ¥ »ç¿ëÇÏ´Â Çü±¤¹°Áú
ÀÎ 2¡¯, 7¡¯ -bis(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF)¸¦ ¼¼Æ÷³» ÃàÀû½ÃŲ ÈÄ
¾ÇÇϼ± ¼±¼¼Æ÷¸¦ perfusion chamber¿¡ ³Ö°í Çö¹Ì°æ »ó¿¡¼­ ¼¼Æ÷³» pH º¯È­¸¦
spectrofluorometer¸¦ »ç¿ëÇÏ¿© ÃøÁ¤ÇÏ¿© ´ÙÀ½°ú °°Àº °á°ú¸¦ ¾ò¾ú´Ù.
1. HCO-3/CO2pH unit °¨¼ÒÇÑ ÈÄ 0.04¡¾0.007 pH unit/minÀÇ ¼Óµµ·Î Áõ°¡ÇÏ¿´À¸¸ç
Na+/H+ exchanger ºÀ¼âÁ¦ÀÎ 1mM anforide¿Í
HCO-3 trangporter ºÀ¼âÁ¦ÀÎ 200 ¥ìM 4,4¡¯
-diisothiocyanato-subene-2,2¡¯-disulphonic acid (DIDS)¸¦ Åõ¿©ÇÑ °æ¿ì ¼¼Æ÷³» pHÁõ°¡°¡
¾ïÁ¦µÇ¾î pH Áõ°¡¼Óµµ°¡ 0.01¡¾0.002pH unit/minÀ̾ú´Ù.
2. °ü·ù¾×¿¡ NH+4 ÀÌ¿ÂÀÇ Ã·°¡¿Í Á¦°Å·Î ¼¼Æ÷³» pH°¡ °¨¼Ò
ÇÏ¿´´Âµ¥ HCO-3°¡ Æ÷ÇÔµÇÁö ¾ÊÀº ¿ë¾×À» °ü·ùÇßÀ» °æ¿ì 1
mM amiloride¿¡ ÀÇÇØ pH Áõ°¡°¡ °ÅÀÇ ¿Ïº®ÇÏ°Ô ºÀ¼âµÇ¾î ¼¼Æ÷³» pHÁõ°¡°¡ ÀüÀûÀ¸·Î
Na+/H+ exchanger¿¡ ÀÇÇÔÀ» ¾Ë ¼ö ÀÖ¾ú´Ù.
3. 10 ¥ìM carbachol Åõ¿©·Î ¼¼Æ÷³» pH Áõ°¡¼Óµµ°¡ 0.16¡¾0.01 pH unit/min¿¡ ¼­ 0.28¡¾
0.03pH unit/ minÀ¸·Î »¡¶óÁ³´Ù.
4. 10¥ìM carbacholÀ» Åõ¿©ÇÑ °æ¿ì 1mM amiloride ÀÇ Ã·°¡·Î ¼¼Æ÷³» pH °¨¼Ò¼Óµµ°¡
0.06¡¾0.008pHunit/minÀ¸·Î¼­ ÀÌ´Â carbacholÅõ¿© ÀüÀÇ 0.03¡¾0.004pH unit/min º¸´Ù »¡¶ú´Ù.
5. ¼¼Æ÷³» H+ À̿¿¡ ´ëÇÑ ¿ÏÃæ´É (buffering capacity) ¥â1Àº ¼¼Æ÷³» pH°¡
7.2-7.4 ÀÏ ¶§ 14.31¡¾1.82À̾úÀ¸¸ç ¼¼Æ÷³» pH°¡ ³·¾ÆÁú¼ö·Ï ¥â1 °ªÀÌ Áõ°¡ÇÏ¿´´Ù.
6. 10 ¥ìM carbachol Åõ¿©·Î Na+/H+ excharlger¸¦ ÅëÇÑ
H+ ÀÌ¿ÂÀÇ À¯Ãâ¼Óµµ°¡ carbacholÅõ¿© Àü º¸´Ù Å©°Ô Áõ°¡ÇÏ¿©
Na+/H+ exchangerÀÇ È°¼ºµµ°¡ carbachol Åõ¿©·Î alkaline shift
µÇ¾úÀ½À» È®ÀÎÇÏ¿´´Ù.
7. ÈòÁã ¾ÇÇϼ± ¼±¼¼Æ÷¿¡¼­ ¼¼Æ÷³» PH¸¦ Á¶ÀýÇÏ´Â ÀåÄ¡·Î
HCO-3¸¦ À¯ÀÔ½ÃÅ° ´Â À̵¿´Ü¹éÁúÀÌ ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù.
ÀÌ»óÀÇ ½ÇÇè°á°ú·Î ¹Ì·ç¾î º¸¾Æ ȺÁã Ÿ¾×¼± ¼±¼¼Æ÷¿¡¼­ ¼¼Æ÷³» pH¸¦ À¯ÁöÇϴµ¥ °¡Àå
Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â Na+/H+ exchanger°¡ ¹«½ºÄ«¸°¼º ¼ö¿ëüÀÇ
ÀÚ±ØÀ¸·Î Ÿ¾×ºÐºñ°¡ Ç×ÁøµÉ ¶§ ±× È°¼ºÀÌ Å©°Ô Áõ°¡ÇÏ¿© ¼¼Æ÷³» pH°¡ 7.25¿¡¼­ 3¹è °¡·®
È°¼ºµµ°¡ Ä¿ÁüÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ ¼¼Æ÷³» pHÁ¶Àý¿¡µµ °ü¿©Çϸç Ÿ¾×³» pH¸¦ À¯Áö½ÃÅ°´Â
µ¥¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â HCO-3 ÀÌ¿ÂÀ» ¼¼Æ÷³»·Î À¯ÀÔ½ÃÅ°
´Â À̵¿´Ü¹éÁúÀÌ ÀÖÀ½À» È®ÀÎÇÏ¿´À¸³ª ÀÌ À̵¿ ´Ü¹éÁúÀÌ ¼¼Æ÷³» ¾î¶² ±âÀü¿¡ ÀÇÇØ Á¶ÀýµÇ´Â
Áö´Â ¾ÕÀ¸·Î °è¼Ó ¿¬±¸ÇؾßÇÒ °úÁ¦·Î »ý°¢ÇÑ´Ù.
#ÃÊ·Ï#
Intracellular pH (pHi) plays an important role in the regulation of cellular processes
by influencing the acitivity of various enzymes in cells. Therefore, almost every type of
mammalian cell possesses an ability to regulate its pHi. One of the most prominent
mechanisms in the regulation of pHi is Na+/H+ exchanger.
This exchanger has been known to be activated when cells are stimulated by the
binding of agonist to the muscarinic receptors. Therefore, the aims of this study were to
compare the rates of H+ extrusion through
Na+/H+ exchanger before and during muscarinic stimulation
and to investigate the possible existence of HCO-3
transporter which is responsible for the continuous supply of
HCO-3 ion to saliva.
Acinar cells were isolated from the rat mandibular salivary glands and loaded with
pH- sensitive fluoroprobe, 2¡Ç, 7¡Ç -bis(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF),
for 30min at room temperature.
Cells were attached onto the coverglass in the perfusion chamber and the chages in
pHi were measured on the iverted using spectrofluorometer.
1. By switching the perfusafe from HCO-3 free to
HCO-3 buffered solution, pHi decreased by 0.39¡¾0.02 pH
units follows by a slow increase at an initial rate of 0.04¡¾0.007 pH units/min. The rate
of pHi increase was reduced to 0.01¡¾0.002 pH units/min by the simultaneous addition of
1 mM amiloride and 100¥ìM DIDS.
2. An addition and removal of NH+4 caused a decrease in
pHi which was followed by an increase in pHi. The increase of pHi was almost
completely blocked by 1mM amiloride in HCO-3-free
perfusate which implied that the pHi increase was entired dependent on the activation of
Na+/H+ exchanger in HCO-3-free
condition.
3. An addition of 10¥ìM carbachol increased the initial rate of pHi recovery from 0.16
¡¾0.01pH units/min to 0.28¡¾0.03pH units/min.
4. The initial rate of pHi decrease induced by 1mM amiloride was also increased by
the exposure of the acinar cells to 10¥ìM carbachol (0.06¡¾0.008pH unit/min) compared
with that obtained before carbachol stimulation (0.03¡¾0.004pH unit/min)
5. The intracellular buffering capacity ¥â1 was 14.31¡¾1.82 at pHi 7.2-7.4 and ¥â1
increased as pHi decreased.
6. The rate of H+ extrusion through Na+/H+
exchanger was greatly enhanced by the stimulation of the cells with 10¥ìM carbachol
and there was an alkaline shift in the activity of the exchanger.
7. An intrusion mechanism of HCO-3 was identified in rat
mandibular salivary acinar cells. Taken all together, 1 observed 3-fold increase in
Na+/H+ exchanger by the stimulation of the acinar cells with
10¥ìM carbachol at pH 7.25. In addition, I have found an additional mechanism for the
regulation of pHi which transported HCO-3 into the cells.

amiloride; cotransporter; DIDS; intracellular pH; HCO-3 BCECF; Na+/H+ exchanger; spectrofluorometer;

Å°¿öµå

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI